

Team Number: 50

Client: Dr. Phillip Jones

Advisers: Matt Cauwels, James Talbert

Team Members:
Evan Blough -- Technical Team Lead, Embedded

Software Lead

Kynara Fernandes -- Ground Control Station Lead

Aaron Szeto -- Controls Lead

Joe Gamble -- Embedded Hardware Lead

Shubham Sharma -- Crazy Fly Implementation Lead,

Website Manager

Jacob Brown -- Physical Hardware Lead

Team Email: sdmay20-50@iastate.edu

Team Website: http://sdmay20-50.sd.ece.iastate.edu/
Revised: 11/17/2019

MicroCART

DESIGN DOCUMENT

SDMAY20-50 1

Development Standards & Practices Used

1. Follow the Principles of Programming by adhering to IEEE software development practices

● IEEE 1233-1996 IEEE Guide for Developing System Requirement Specifications

○ Used for determining system requirements in relation to client needs and

functional/non-functional requirements

● IEEE 12207-2017 International Standard: Software life cycle processes

○ Used for involving our stakeholders in the development process and production of

maintainable software.

● IEEE 1008-1987 Standard for Software Unit Testing

○ Used as a model for developing unit testing for our control software

● IEEE 802.1-2010 Standard for Port-based network controls

○ Used as a model for communicating with the drone

2. IEEE Code of Ethics provided by the IEEE organization

Executive Summary

SDMAY20-50 2

Summary of Requirements

List all requirements as bullet points in brief.

1) Integration of a secondary quadcopter into the high-speed camera system,

2) Extend modular design to enable testing advanced controllers and signal processing,

3) Design and develop capabilities to support the implementation of the real world

application by improving the GCS functionalities

4) Design and implement a mock real-world demo for visitors.

5) Integrate Crazyflie platform into system

Applicable Courses from Iowa State University Curriculum

List of Iowa State University courses which were applicable towards the MircoCART project:

● CPRE 288:

○ This course:

■ Goes over elementary embedded design flow/methodology

■ It gives students a basic understanding into micro-controllers.

■ Applications laboratory exercises with embedded devices.

○ We work with microcontrollers a lot with the project as evident from the project

title. Hence, this course is a great foundation to assist us in the project.

● EE 230:

○ This course:

■ Is an overview of circuitry design and analysis

■ Gives students experience working with laboratory instrumentation and

measurements

○ This is an applicable course as the project consists of circuit design knowledge

from 230.

● CPRE 381:

○ This course:

■ Is an Introduction to computer organization, evaluating the performance

of computer systems

■ Datapath and control, scalar pipelines, introduction to memory and I/O

systems

○ The project consists of ARM-processors we would need to work with. And since

this course is centered heavily around processors it is helpful towards the project.

● EE 330:

○ This course:

■ Goes over semiconductor technology for integrated circuits.

■ Analysis and design of analog building blocks.

■ Laboratory exercises and design projects with CAD tools and standard

cells.

○ The project would require an understanding of circuit issues such as unmatched

impedance and circuit devices such as current mirrors. Which is why this course is

applicable for the project.

● EE 224:

SDMAY20-50 3

○ This course:

■ Introduction to using Matlab for EE work

■ Analysis of Signals and various signal systems like LTI

○ This class teaches how to use Matlab and quadcopter controls are entirely based in

Matlab hence it is helpful for the project.

● EE 321:

○ This course:

■ Continuation of EE 224

■ Focuses more on modulation and data transmission

○ Focuses on data transmission which applies to how the quadcopter communicates

with the controls and ground station, which is heavily used in the project.

● CPRE 488:

○ This course is about:

■ Embedded microprocessors and embedded memory

■ Component interfaces communicating to embedded software

■ Platform-based FPGA technology w/ hardware synthesis

■ And Real-time operating system concepts

○ This project requires knowledge with VHDL and C development on Xilinx

platforms, multidisciplinary projects, embedded system design, and control

systems on drones. Hence, why the course is applicable to the project.

● SE 339:

○ This course:

■ Software architecture.

■ Uses a raspberry pi to simulate a fleet tracking application.

■ Teached about how different components in a project should

communicate and the best practices to do so.

○ This project requires knowledge of engineering and software architecture. Since

various components of this project must communicate with each other like the

camera system, the drones and the ground station. This course is applicable to this

project in choosing the best architecture for our system

New Skills/Knowledge acquired that was not taught in courses

Qt software libraries - Qt is an open source GUI development framework built to run on C++

applications. Qt was used to create our graphical user interface to meet the needs of our

research/development users.

RC communication - RC receivers and transmitters use defined method of communication. Our

application interfaces with an RC receiver. The receiver puts out 6 channel PWM signals. These

signals are used to control drone behavior.

PID Controls - PID Control in not generally taught in depth without taking specific controls classes.

PID control uses feedback to account for present, past, and anticipated error. These errors are

assigned different weights depending on gain values, and the overall output to the actuators is

recalculated. PID is one of the control algorithms our drone platform uses to correct its position.

SDMAY20-50 4

Table of Contents

1 Introduction 7

1.1 Acknowledgement 7

1.2 Problem and Project Statement 7

1.2.1 Problem Statement 7

1.2.2 Solution Approach 8

1.3 Operational Environment 8

1.4 Requirements 8

1.5 Intended Users and Uses 9

1.6 Assumptions and Limitations 9

1.6.1 Assumptions 9

1.6.2 Limitations 9

1.7 Expected End Product and Deliverables 9

1.7.1 Implementation of Second Drone 9

1.7.2 Swarm Flight of Crazy Flies 10

1.7.3 Swarm Flight of large drones 10

1.7.4 Addition of Linux to Second Core 10

1.7.5 Modular Control Algorithm Swapping on the Drone. 11

1.7.6 More Interactive and Comprehensive UI 11

2. Specifications and Analysis 11

2.1 Proposed Design 11

2.2 Design Analysis 12

2.3 Development Process 12

2.4 Design Plan 13

3. Statement of Work 13

3.1 Previous Work And Literature 13

3.2 Technology Considerations 13

3.3 Task Decomposition 14

3.4 Possible Risks And Risk Management 15

3.5 Project Proposed Milestones and Evaluation Criteria 16

3.6 Project Tracking Procedures 16

3.7 Expected Results and Validation 16

4. Project Timeline, Estimated Resources, and Challenges 17

SDMAY20-50 5

4.1 Project Timeline 17

4.2 Feasibility Assessment 18

4.3 Personnel Effort Requirements 18

4.4 Other Resource Requirements 20

4.5 Financial Requirements 20

5. Testing and Implementation 20

5.1 Interface Specifications 21

5.2 Hardware and software 21

5.3 Functional Testing 21

5.4 Non-Functional Testing 23

5.5 Process 23

5.6 Results 24

6. Closing Material 25

6.1 Conclusion 25

6.2 References 25

6.3 Appendices 25

SDMAY20-50 6

List of figures/tables/symbols/definitions (This should be similar to the

project plan)

Term Definition

CLI Command-line interface

Demo Short for demonstration; this is one of the deliverables of the project: a

demonstration of the quad’s capabilities, for example, doing a backflip with

the quad, finding an object and following it, communicating with a second

quad to perform flight patterns

FPGA Field Programmable Gate Array; this is a board that can be programmed to

simulate electrical hardware components. Used often in reconfigurable

computing

GCS Ground Control Station, the application that runs on a host computer that

communicates with the quad via a Wi-Fi connection and sends its

coordinates to the quad

GUI Graphical user interface

IR Infrared wavelengths of light longer than visible light; used in the VRPN

system to determine the position of the quad

LIDAR Light Detection and Ranging; this is a system for determining the altitude (z)

of the quad using the onboard sensor

Optical Flow A system using pattern of motion of objects, surfaces, and edges caused by

the relative motion between the and the scene to determine position; used by

the quad to calculate the position (x, y) when not in the lab using the VRPN

system

PID Proportional-integral-derivative control system; standard control

algorithm used on the quad

Quad Short for quadcopter; this is the hardware platform we use in this

project

Setpoint In a control system, the target value for an essential variable

VRPN Virtual-Reality Peripheral Network; this is the system used to determine the

position (x, y, z) and orientation (φ,θ,ψ) of the quad in the lab using a set of

12 stationary cameras and an IR transmitter on the quad

Shield

Board/Breakout

Board

PCB board designed by a previous MicroCART team that integrates with the

Zybo board to interface with sensors and actuators used for autonomous flight.

SDMAY20-50 7

1 Introduction

1.1 ACKNOWLEDGEMENT

The development of this project has been aided by ECPE Faculty and graduate students at
Iowa State. They offer valuable technical advice and insight. We would like to acknowledge their
contributions to this project below.

● Matthew Cauwels
● Dr. Phillip Jones
● James Talbert
● May 2020 MicroCart Team

1.2 PROBLEM AND PROJECT STATEMENT

1.2.1 Problem Statement

MicroCART is a drone platform that will be used by graduate students to perform research

on embedded systems and controls topics. The platform will also need to demonstrate its operation

to professionals or future students to showcase the utility of skills obtained through the course of a

EE/CPRE/SE degree. This platform will also need to be maintainable and modifiable by future

senior design teams. Currently, the MicroCART platform is functional, and it will be extended to a

copy of the current platform to implement swarm flight. In order to achieve these objectives, we

will need to copy, refine, and modify the current platform to have more intuitive interface and

more accurate flight performance.

Figure 1.2.1: Current drone implementation

SDMAY20-50 8

1.2.2 Solution Approach

We plan to further our knowledge of the previous development done on the project. We

will need to read current documentation of the drone’s subsystems and infer the functionality of

portions that aren’t documented. We also elected focus areas for each team member to specialize in

areas of drone development. Once each of us are familiar with our respective subsystems, we can

start building the second platform.

There is a smaller drone platform that we can use to familiarize ourselves with navigation.

We hope to implement swarm flight with these smaller drones, and once we have experience with

the smaller drones, we will be able to move on to navigating the larger drone. By the end of the first

semester, we hope to have both large drones operating.

 The second semester would then consist of us adding new features to the drone to fulfill

the purposes outlined above. The controls and embedded software leads will work on making more

intuitive source for swapping controls algorithms on the drone. The GUI leads will be working on

creating an easy to use interface for the drone. The embedded hardware will generate fast feedback

loops to make the control systems more efficient and regulate memory use for each control

algorithm. The whole team will work on implementing swarm flight. As a team we might work to

add Linux to the second core to promote development on our platform. This second Linux core

could have high level C++ libraries like OpenCV that could be used for soft real time object

tracking.

1.3 OPERATIONAL ENVIRONMENT

The operational environment for the quad is the inside of Coover 3050, and this room has a
VRPN camera system that can be used for drone navigation. For indoors operation there will not be
any hazardous environmental factors like extreme heat or cold. The environment in the lab will
have people in it, and the drone could collide with expensive equipment in the lab, so failsafe for
flight faults are important considerations for our operating environment. Due to the fact that the
operation environment is identical to its use environment, we expect little design difficulty caused
by the operational environment

1.4 REQUIREMENTS

The functional requirements for this project are building our quadcopter, get it flying at the

same time as another quadcopter, and modifying the controls system to be compatible with other

control systems as seen in [1]. Some economic/market requirements include last year’s quadcopter

assembly materials, quadcopter replacement parts, and spare Lithium Ion batteries. The

environmental requirement is that the quadcopter should be able to fly in an indoor environment.

UI requirements include making the control systems more user friendly. The non-functional

requirements for our design are as follows: improving the usability of our GCS, improving drone

flight responsiveness/latency, enhancing flight accuracy of the drone during autonomous navigation.

SDMAY20-50 9

1.5 INTENDED USERS AND USES

The platform will be used to test different control systems and their varying efficiencies for
students. Students will require quick, simple interfaces to maximize learning and reduce time use
for lab. The system will also be utilized in future senior design projects, requiring our team to
practice good documentation and written communication techniques. Finally, the project will be
utilized in college demonstrations as a means of showing off to our employers what our college can
do as well as an attempt to recruit future students.

1.6 ASSUMPTIONS AND LIMITATIONS

1.6.1 Assumptions

● We won’t have more than two large quadcopters in our operating environment

○ Further maybe hazardous/ too complicated

● The operating environment indoors doesn’t contribute any significant hazards

○ Humans acting in a hazardous manner might complicate this

● We assume that standard components we buy from manufacturers come in working

condition

○ This assumption may not be valid, but will save time for excessively testing every

single electrical component

1.6.2 Limitations

● Drone flying environment limited to the area of the camera sensors within Coover 3050
○ The flight is dependent upon cameras tracking drone

● The computational power of the drone
○ Limited in processing time
○ Limited in memory access speed

● Feedback delays in control systems by the camera systems
○ Delay in ms expected
○ From Wi-fi communication

● Battery to payload ratio imposes limitations on overall runtime
○ Battery technology and weight characteristics of drone limit flight to appr. 5

minutes
○ Frequent replacement of battery systems necessary

1.7 EXPECTED END PRODUCT AND DELIVERABLES

Our product is academic in nature, so we won’t have commercialized descriptions. We will
need to provide detailed documentation through gitlab documentation and documentation
generators like doxygen.

1.7.1 Implementation of Second Drone

We are going to make an exact copy of the current drone platform from the previous year.

Most of the work done on this portion will be in the form of research on the existing system. In

order to make another platform we will need to research the existing documentation. We are

making this deliverable, because we need to have one stable platform to demo our solution to

SDMAY20-50 10

people and one for a senior design team to do development on. This deliverable should be

completed by October 25th.

1.7.2 Swarm Flight of Crazy Flies

After we have a second drone, we will hopefully have access to several crazy flies. We can

use these platforms to test out extending our GCS software to multiple platforms. This is an

intermediate deliverable. We will use this deliverable to get experience with programming swarm

flight with inexpensive platforms and move on to our permanent solution for swarm flight. We

should have this portion completed by the end of the first semester or the beginning of the second

semester.

1.7.3 Swarm Flight of large drones

After we have experience with swarm flight on the crazy flies and have the second drone

built, we will work on having two drones operate simultaneously. This deliverable relates to our

client need of demoing to students and faculty. Showing multiple vehicles operating

simultaneously is more impressive than just a single vehicle. This showcases the usefulness of skills

obtained with an ECPE degree. Controls students also will want to test control algorithms with

multiple platforms interacting. This should be done by midway through the second semester.

1.7.4 Addition of Linux to Second Core

After we have both drones fully implemented and functioning properly, we will need to

add new features to our board to showcase skills that we have learned from our degree. One of the

features we plan on adding is Linux to the second core. The Zybo board has two ARM cores. We

will install Linux on the second core and this will give researchers and future project teams greater

flexibility to control our platform. We can also use it to view the value of a degree. We can install

an image detection library like OpenCV and a camera on Linux and use image detection to give

control commands to the drone. This will be done at the end of the second semester of this course.

SDMAY20-50 11

Figure 1.7.4: Zybo platform for drone development

1.7.5 Modular Control Algorithm Swapping on the Drone.

Another feature we plan on implementing is the modularity on control algorithms.
Currently, the drone control program runs a PID based position correction algorithm. It measures
the differences between the set points and the actual position of the drone that is captured.

1.7.6 More Interactive and Comprehensive UI

When talking with the current users of our project, we found that it would be helpful to

create a more interactive element for the data from the quadcopter, camera system and ground

station. We will do this by adding new CTEs, sliders and graphs to help visualize the input, output

and calculated data.

2. Specifications and Analysis

2.1 PROPOSED DESIGN

So far we’ve started looking at the documentation and getting familiar with previous years
work. We’ve also talked with our client about what’s expected of us and to help us plan out what we
want to do with the quadcopter. To approach solving these problems we are using the Agile method

SDMAY20-50 12

to coordinate our coding work and the discord application to coordinate in-person meetings to work
on the hardware aspects of the quadcopter.

2.2 DESIGN ANALYSIS

During the beginning design portion of the project we have worked to understand the
current implemented system. Each component of the system has been built over many years and
passed through many teams. It takes time to understand each portion of the system to an extent at
which it can be utilized; therefore, the majority of the time has been spent reviewing documents.

Our ability to process the current documents has progressed well. We have begun to run
the drone independently and some initial work. Each person on the team has demoed the drone
and has read documentation. We have begun to complete initial work including soldering, control
system analysis, gui interfaces, and initial design document creation.

Strengths

● Team comradery and communication
● Good mix of disciplines w/ large knowledge base
● Contacts with previous MicroCART users to answer questions
● Large group to distribute work

 Weakness

● Large number of systems with intricacies
● No control theory knowledge base
● Poor documentation
● Limited timeframe to implement

2.3 DEVELOPMENT PROCESS

After being assigned our project, we met with our customer and advisor to discuss the
requirements for our project. Since we’re working on an embedded systems project, our system has
multiple components that would have different requirements that would change as we move
through the school year.

We are currently in the design phase of our project. We are researching materials like
control theory etc. to help us understand our customer/users better and in turn, produce a better
tailored product.

With these two phases, we are currently in the waterfall process. But since our
requirements will change during the phase of the year, we are transitioning into an agile
development process. The plan is as such:

● Tickets: We are currently using Trello to handle our tasks and keep track of the tasks that
need to be done, the tasks that are in progress and our accomplished tasks.

● Meeting with stakeholders: We meet with our customers, users, and advisor once a week
on Mondays to discuss our accomplished tasks and the concerns or goals they have for the
coming sprint or sprints.

● Sprints: We have 1-week sprints in which we will go through one iteration of standup,
grooming, retrospectives and stakeholder meetings.

● Grooming: After our stakeholder meeting, we regroup, and create and prioritize tickets on
Trello for the new sprint.

● Stand-up and Retrospective: We start our weekly team meetings with scrum, where we
talk about what we did, what we plan on doing and if we had any blockers for that sprint.
Since we are full-time students, we compromised on doing this weekly instead of daily.

SDMAY20-50 13

2.4 DESIGN PLAN

3. Statement of Work

3.1 PREVIOUS WORK AND LITERATURE

The MicroCART Quadcopter is an ongoing project at ISU that has been worked on by

generations of students. Previous teams have already built a quadcopters drone, and we will use their

drone as starting point for how we want to build and modify our own version of the quadcopter. An

advantage of having the previous year’s drone with code available, is that it gives us a great idea of

what we’re trying to do and how to go about achieving it. A disadvantage is that we can’t follow

previous years example too closely because some of their code doesn’t work. Our team has already

encountered several examples of broken code that previous teams have uploaded to the github.

3.2 TECHNOLOGY CONSIDERATIONS

Highlight the strengths, weakness, and trade‐offs made in technology available.

Discuss possible solutions and design alternatives

Strengths

● High performance processing
○ Complex control integration
○ Visual data computation
○ General quickening in data processing

● New batteries with improved battery life and energy densities

SDMAY20-50 14

● High performance motors
● PCB and CAD designing tools
● Large software libraries
● Open source material
● IMU sensors with high accuracy positional data
● Camera system with high accuracy positional data

Weaknesses

● Cost of new material and parts
● Weight added to quadcopter resulting in lower battery life and risk of loss of flight
● Increased dependency on a large volume of different technologies results in a convoluted

mashing of technologies that is not digestible by future teams/students

Trade-offs (Summary)

● Cost and complexity for more advanced solutions with return on drone abilities
● Usage of new technologies tends to increase the abilities, but increases weight, power, and

generally reduces performance of the drone

3.3 TASK DECOMPOSITION

3.3.1 Drone Construction

Leveraging of current drone hardware buildup and extra parts to create a new, fully
functioning drone. The drone buildup will require the use of knowledge in electrical hardware skills
and some mechanical understanding. The information on how to build-up the new drone will come
from observations of the previous drone.

3.3.2 Controller Swapping

 Current drone software performs calculations to determine motor output using a PID

scheme. The desired outcome is to make the scheme swappable. Effort needs to be put forth into

understanding how the current implementation works and adding commands that are usable

across all control schemes. An understanding of how to construct these control methods must also

be done.

3.3.3 Image Data Processing

 A second linux core is being added to the device to process image data from cameras not

currently on the system. We then want the libraries on the linux core to support a C++ image

processing library like OpenCV. We will have to find an attachment point for the camera and

develop and electrical interface, which could be I2C or USB.

3.3.4 Multi-Drone Flight

 The new drone built from the drone assembly process will be flown in tandem with the

current working drone. The crazyflies in development are also going to be flown with the large

drones. This will all require code for the drones to recognize each other’s position and ensure no

collisions occur. We will also have to modify the current networking scheme. The GCS and drone

SDMAY20-50 15

interact only with each other, so to add multiple drones we will need to reconfigure the networking

scheme to an appropriate type [2].

3.3.5 Organizing UI and Git

 Much of the work that has been done over the past few years has been somewhat

organized by the many hands the work has passed through. We will work to organize the hardware

components, software code, git, and help-documents.

3.4 POSSIBLE RISKS AND RISK MANAGEMENT

3.4.1 Equipment Risks

There are several things that may impede our progress on this solution. The equipment

that we were given to support software development on our platform is very dated. We were

supplied one 15-year-old computer that did not support c++ development, which is what our

ground station was built with. This has already impeded development progress and may continue

to slow our implementation time in the future. The other working development computer had

several networking issues that were introduced by integration with the VPRN camera system. Some

of the components that are supported by our previous teams are very old. The age of the sensors

can introduce development problems.

3.4.2 Knowledge Area Risks

There are several development areas that could present risks because we have a lack of

knowledge in these areas. The swarm flight requirements introduce some significant variation to

the networking scheme of the current system. The current system has the ground station machine

connect to a wifi network created by a small wifi microprocessor chip on our flight control board.

This introduces a risk to our team because in the new configuration this configuration is not viable.

We also have limited knowledge of methods for implementing a new networking scheme with the

existing hardware. This will likely impede development progress at some point.

The implementing Linux on the second core feature has some knowledge area risks. We

don’t have knowledge of how trying to implement this feature will affect our latency in

communications with the control station. We will have to thoroughly research and test to ensure

this feature implements itself without compromising the safety-critical feedback systems.

3.4.3 Costs Risks

We have several dependent hardware components that we need to buy to support our

drone applications. Buying these components impedes our progress because we have to go through

a purchasing procedure and justify our need for these components. Some components may break

or malfunction, so we will have to buy new ones. We have to buy custom circuit boards, RC

controllers, Lithium Polymer batteries, etc. We have to wait for these things to be purchased in

order to develop.

SDMAY20-50 16

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

Some key milestones for our project are

1. Having multiple autonomous Crazy Flies controlled with our GCS software

2. Build our own Quadcopter drone

3. Swarm flight with the Quadcopter

4. Implementing controls algorithm swapping

5. Implement Linux to second core

6. Improve UI and Github organization

For testing our first and second milestones we need to test how well they fly and then

working on improving our controls system. The other milestones we will need to test using cod and

CICD tests.

3.6 PROJECT TRACKING PROCEDURES

Our team has multiple ways of tracking our project’s progress. We use Trello to

communicate what needs to be done, their deadlines, and by whom. Our client also requires us to

write weekly reports to track our one-week sprint’s progress and a meeting to discuss the sprint.

We have a scrum-style stand-up every week to ensure that our team members are making

significant progress, that no progress is being blocked and to plan for collaboration.

3.7 EXPECTED RESULTS AND VALIDATION

This project will be considered a success if the features we outlined earlier meet the needs

of our clients. We have three client bases, future Microcart teams, Controls systems graduate

students, and demonstration viewers. We need to support future Microcart teams by having

detailed and organized documentation. We need to have maintainable software development

practices. Meeting these requirements will give us a desired outcome for this client base.

We also need our application to support graduate student research development. To

ensure this feature we need a comprehensive GUI tool that they can use to interface with the

drone. The tool will need to interact with the quadcopter system to support real-time very precise

indoor navigation. We will interact with our client frequently to ensure the tool implements his

desired features. An example of one of these features is a slider bar to set PID gains on the control

algorithm on the drone platform. One requirement that supports this outcome is the installation of

Linux onto the second core. We will generate a successful outcome if this client finds our work

satisfactory.

Finally, we will need to develop software and hardware features to showcase the value of an

ECPE/SE degree to alumni, future students, anyone who may be interested, etc. Having features

like swarm flight supports this outcome. These features showcase the value of skills gained because

it is an incredibly difficult feature to implement.

We will confirm that all the desired outcomes are met at a high level by continuously

asking for client feedback during and after the development process. We will generate various test

cases based on our understanding of the user’s needs, and we will make sure that these tests pass.

SDMAY20-50 17

4. Project Timeline, Estimated Resources, and Challenges

4.1 PROJECT TIMELINE

First Semester Timeline

Second Semester Timeline

SDMAY20-50 18

4.2 FEASIBILITY ASSESSMENT

Realistically, we should be able to complete most of our set milestones. We’ve already

achieved two of them, getting the Crazyflies flying and getting a second drone built. Now we’re

working on the more coding intensive work and we’ve already run into some issues with previous

years code not working. We’re currently debugging them and are struggling due to inexperience with

the new programs. However, we should still be able to complete most of our goals, since we are

making progress and the deadline is about half a year from now.

4.3 PERSONNEL EFFORT REQUIREMENTS

Include a detailed estimate in the form of a table accompanied by a textual reference and

explanation. This estimate shall be done on a task-by-task basis and should be based on the

projected effort required to perform the task correctly and not just “X” hours per week for the

number of weeks that the task is active

Task Table

Task Weeks to Implement

Drone Assembly

Board Assembly 3

Chassis Assembly 2

Board Testing 1

Zybo Refitting 2

Interconnect Assembly 2

Crazyflie Development

Documentation of Research 4

Autonomous Flight 3

Integration with GCS 3

Multiple Drone Flight 3

GCS Development

Implement New PID Features 2

Documentation for Future Teams 3

Reimplementation of Lost GCS Features 3

SDMAY20-50 19

Features for Different Flight Controllers 3

Project clean-up 2

Crazyflie Development

Development of Crazyflie Adapter 6

Implement Swarm Flight 6

GCS Development

Graph of Drone Position Widget 4

Draw Flight Pattern Feature 4

Extending GUI Functionality to Multiple Drones 5

Quad-copter Development

Extending Networking to Allow Swarm Flight 5

Control Algorithm Swapping Support 5

Addition of Linux to Second Core 2

Project Documentation for Future MicroCART Team 4

Timeline Justification

Our timeline can be broken into two development cycles, there is one cycle for the first

semester deliverables, and there is another cycle for the second semester. Each cycle has 3 sub-

categories for development. The first cycle has Drone Assembly, Crazyflie development, and GCS

development, and the second cycle has Crazyflie development, GCS Development, and Quad-

Copter Development. The proceeding description will break down the tasks of each subcategory

and justify their allotted completion times.

All of the work for drone assembly has already been completed this semester. The process

of assembling the shield board with its components took 3 weeks. This was due to the fact that we

had one team member that was comfortable with soldering PCB’s. The assembly of the quadcopter

chassis took 2 weeks. This task involved assembling all the drone parts in the first week, and

attaching motors and soldering ESC’s onto the frame of the drone during the second week. We had

two team members that were able to implement these features. This gave another team member

time to work on refitting the headers on the Zybo board to fit with the shield board. This was

accomplished in two weeks. It took one week to perform some basic board tests on the shield board

and Zybo Board to confirm their functionality.

SDMAY20-50 20

Crazyflie development this semester will also lead into next semester because there are

features that still need to be implemented. Our Crazy fly lead used four weeks to expand his

knowledge of the Crazyflie development environment. He was able to get autonomous flight

operational within 3 weeks. The integration with the GCS and multiple drone flight features are still

ongoing and showed in the second semester’s timeline. The adapter will take 6 weeks to implement

during the next semester. This allows 4 weeks to finish implementation and 2 weeks to test and

evaluate. During the testing phase of the GCS adapter, the crazyflie lead will begin to implement

swarm flight.

 The remaining subcategories of GCS and Quad-copter development have similar

methodologies for assigning time for tasks with some variance. Each task will have 2 weeks for

testing and evaluation at the end of its timeslot. While testing is being performed, implementation

of new features should begin. We allocate the last four weeks of the second semester to project

documentation. We aim to stop development and thoroughly document the existing system to

create and extensive report for the future MicroCART team to pick up where we left off. This

manual will prevent the transition issue we had at the beginning of our semester.

4.4 OTHER RESOURCE REQUIREMENTS

We have identified the parts and materials required for this project in this document. In

addition to that we have identified and ordered switch parts that we need for the Crazyfly and

Drone. We also need access to the Coover 3050 room since it holds the quadcopters and the

programs needed to work on the drone.

4.5 FINANCIAL REQUIREMENTS

We shouldn’t need any financial resources for our project. For anything we need to buy we

need to get approval from Dr. Jones. If he agrees he’ll order them for us.

5. Testing and Implementation

Testing is an extremely important component of most projects, whether it involves a
circuit, a process, or a software library

Although the tooling is usually significantly different, the testing process is typically quite
similar regardless of CprE, EE, or SE themed project:

1. Define the needed types of tests (unit testing for modules, integrity testing for interfaces,
user-study for functional and non-functional requirements)

2. Define the individual items to be tested

3. Define, design, and develop the actual test cases

4. Determine the anticipated test results for each test case

5. Perform the actual tests

6. Evaluate the actual test results

7. Make the necessary changes to the product being tested

https://docs.google.com/spreadsheets/d/1T7JX8MAlS-7DFcStaKz-todlj6twQMblXv7YI7efDmA/edit#gid=0

SDMAY20-50 21

 8. Perform any necessary retesting

9. Document the entire testing process and its results

Include Functional and Non-Functional Testing, Modeling and Simulations, challenges you’ve

determined.

5.1 INTERFACE SPECIFICATIONS

Our project requires a wide array of interface specifications. One of the most important

specifications we are working on is control algorithm switching for the drone controls. For example,

the user should be able to remotely control the drone with a controller and then be swap mid-flight

into a different control scheme like PID. Another specification we are working on is improving the

GUI to be more user friendly for future Microcart teams. Some examples of our improvements are

adding x,y,z axes viewing and implementing slider bars. Another specification we are working on is

with our Matlab data analysis tool. It should be able to take test flight data from a txt file and graph

using Matlab’s graphing software.

5.2 HARDWARE AND SOFTWARE

We have multiple software projects that we use for this project. This means we have
multiple interfaces that we use to debug, interact, and develop on these projects. Software we are
working on includes Matlab programs for modeling flight behavior, C/FPGA application, and C++
Qt Creator environment with GDB debug tools.

We interface with matlab through the matlab application. The Matlab console will output
errors and expected values easily to the screen .Matlab interface specifies debug functions that can
be used to trace computational errors in our simulation software.

We interface with the embedded C and Programmable logic on the Zybo 7020 board with
the Vivado and XSDK design tools. Both Vivado and XSDK have comprehensive testing
functionality. XSDK can use JTAG/USB interface to debug embedded software on the FPGA board.

We interface with our C++ GUI application with the QTCreator IDE. This IDE has the Qt
Test library which supports a testing interface similar to JUnit tests. This tool also allows you to set
breakpoints in your code and use GDB to debug segfault errors.

We also have hardware on our project that we need testing/debug interfaces for. The
printed circuit board we use has several copies of outputs. This will allow us to interface the
hardware with oscilloscopes to take traces to resolve complex issues.

5.3 FUNCTIONAL TESTING

5.3.1 Unit Testing

During our development and testing project any new and some existing software modules
that we create will ideally be tested in accordance with IEEE software unit testing standard.We will
follow the flow diagram below for developing comprehensive unit tests for modules both on the
GCS software, embedded platform software, and Matlab simulation software.

SDMAY20-50 22

This unit testing scheme can be revised somewhat to include unit testing for critical

hardware components. Unit testing has already been done for many of the hardware components

on the drone.

5.3.2 Integration Testing

After a software/hardware module makes it past successful unit tests, we assume that a

module works, but the only way to verify its functionality after this point is to perform integration

tests. Some integration tests have already been conducted for system submodules. We ran unit

tests on our Breakout Circuit board and Zybo board, so after they were verified, we ran integration

tests with the two programmed boards interfacing with one another. These tests confirmed

functionality for the Lidar and IMU hardware modules within the board integration environment.

5.3.3 System Testing

 When substantial progress has been made on the development of the project, we will run

system testing to confirm that the drone solution has fulfilled our design requirements as stated

earlier in this document. One of the future tests could be a test script that generates flight paths for

multiple drones. If the drones navigate this path successfully, this would be a solution that met our

functional requirement of swarm flight. Outlining general concepts for system testing is important,

but the actual implementation of system tests cannot be planned until both unit and integration

tests have been finished for the system.

SDMAY20-50 23

5.3.3 Acceptance Testing

Acceptance testing will be the very last phase of our design evaluation. This will be done

with our client and adviser Dr. Phillip Jones. This will determine whether the features we have

developed for our drone system have adequately met our system requirements and our client’s

expectations.

5.4 NON-FUNCTIONAL TESTING

The non-functional requirements for our design are as follows: improving the usability of

our GCS, improving drone flight responsiveness/latency, enhancing flight accuracy of the drone

during autonomous navigation. These requirements will each have separate tests to ensure that

their performance metrics are met.

The utility of our GCS software will be evaluated by our primary user group. The GCS

station has various functional requirements like the ability to send parameters to the drone, and

the ability to receive measurements / data from the drone. We are in contact with a graduate

student that is in charge of emulating the needs of our primary user base. He evaluates the non-

functional requirements for our GCS software like being able to find a functionality easy.

In order to fulfill the nonfunctional requirement of latency, we have to specify exactly what

type of latency is being examined. The drone platform currently has log files that record sensor

data such as, actuator output and user inputs. If a setpoint is given to a drone platform like the

quadcopter or crazy fly, the latency can be examined by observing the time between when a

command was sent from the GCS and when the command was received by the quad platform. The

latency of the current system with a networking configuration of one drone is on average 3-4 ms

from the ground station and back. There will be changes made to the networking configuration, so

we will need to examine the end to end latency after we implement multiple drones to ensure this

non-functional requirement.

Flight accuracy metrics can be analyzed with the drone’s data logging capabilities. The

VPRN camera system will give an absolute reference to compare actual location to setpoint values.

A drone navigating on an autonomous path shouldn’t vary more than half a foot from its intended

location on any axis. Any more variance in flight path could introduce danger during swarm flight,

and it would make the project ineffective for autonomous navigation research.

5.5 PROCESS

We used a variety of tests to check on our second drone. Some examples of this include

testing the motors individually and all at once and testing if the drone worked with the given scripts.

We ran similar tests on the Crazyflie but with manual flight instead of scripts. The other methods

like drone swarm and GUI improvements are still a work in progress and we are still in the process

of testing them.

SDMAY20-50 24

5.6 RESULTS

We’ve managed to make good progress on our Micro Cart project during this first semester.

Our successful results so far include building a second working drone, soldering an FPGA,

implementing some GUI improvements like sliders, building several Crazyflies and flying one of

them, and fixing last year’s data analysis code.

The results we are working on improving is getting two drones flying at the same time,

getting a Crazyflie swarm working, implementing more GUI improvements, and implementing

control algorithm switching.

Some implementation issues we are running into is the lack of documentation for previous

years code. This is a problem because whenever we try to run their code, we get error messages so a

good chunk of our workload this semester was trying to understand and fix the code. Similarly, we

also have some issues on the hardware side of the project because there’s no documentation or

instruction on what we’re supposed to do. We also had issues with our lab space since we need admin

access on the computers to continue working and we’re still waiting on that.

SDMAY20-50 25

6. Closing Material

6.1 CONCLUSION

The work we have done so far is building several crazyflies and achieving flight with one of

them and successfully building a second working drone. Some more abstract work we’ve also finished

is GUI improvements to the software and fixing up last year’s code. Our end goals include getting

crazyflies swarm going, two drones flying at the same time, and maybe both the crazy and drones

flying at the same time. Our current plan that has worked out well so far is to have several smaller

work meetings throughout the week followed by a big work meeting with everyone on Sunday. Since

it’s been so successful so far we’ll probably continue doing this for next semester.

6.2 REFERENCES

Minimal technical references were made throughout the document. Little technical
documents were referenced as the majority of knowledge was pulled from previous work done by
previous teams.

[1] M. Rich, “Model Development, system identification, and control of a quadrotor
helicopter” in Iowa State University Digital Repository, 2012

[2] Wehr, David. “ESP8266 Wifi Latency Testing.” 17 Sept. 2016, Link.

6.3 APPENDICES

Fig 1. Data tool analysis sample

https://drive.google.com/open?id=1ov0a4HcBZyyDI-xqd5Lb7v9iOLEIw6C0

SDMAY20-50 26

Fig 2. Successful Quad motor test reading

	1 Introduction
	1.1 Acknowledgement
	1.2 Problem and Project Statement
	1.2.1 Problem Statement
	1.2.2 Solution Approach

	1.3 Operational Environment
	1.4 Requirements
	1.5 Intended Users and Uses
	1.6 Assumptions and Limitations
	1.6.1 Assumptions
	1.6.2 Limitations

	1.7 Expected End Product and Deliverables
	1.7.1 Implementation of Second Drone
	1.7.2 Swarm Flight of Crazy Flies
	1.7.3 Swarm Flight of large drones
	1.7.4 Addition of Linux to Second Core
	1.7.5 Modular Control Algorithm Swapping on the Drone.
	1.7.6 More Interactive and Comprehensive UI

	2. Specifications and Analysis
	2.1 Proposed Design
	2.2 Design Analysis
	2.3 Development Process
	2.4 Design Plan

	3. Statement of Work
	3.1 Previous Work And Literature
	3.2 Technology Considerations
	3.3 Task Decomposition
	3.4 Possible Risks And Risk Management
	3.5 Project Proposed Milestones and Evaluation Criteria
	3.6 Project Tracking Procedures
	3.7 Expected Results and Validation

	4. Project Timeline, Estimated Resources, and Challenges
	4.1 Project Timeline
	4.2 Feasibility Assessment
	4.3 Personnel Effort Requirements
	4.4 Other Resource Requirements
	4.5 Financial Requirements

	5. Testing and Implementation
	5.1 Interface Specifications
	5.2 Hardware and software
	5.3 Functional Testing
	5.4 Non-Functional Testing
	5.5 Process
	5.6 Results

	6. Closing Material
	6.1 Conclusion
	6.2 References
	6.3 Appendices

